Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Genet ; 19(7): e1010344, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418499

RESUMEN

The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insights into cellular responses to impaired plastid protein homeostasis.


Asunto(s)
Proteoma , Proteostasis , Proteostasis/genética , Proteoma/genética , Proteoma/metabolismo , Plastidios/genética , Plastidios/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Transducción de Señal/fisiología , Proteínas de Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Nucleic Acids Res ; 51(D1): D337-D344, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399486

RESUMEN

The 5' and 3' untranslated regions of eukaryotic mRNAs (UTRs) play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization, and message stability. Since 1996, we have developed and maintained UTRdb, a specialized database of UTR sequences. Here we present UTRdb 2.0, a major update of UTRdb featuring an extensive collection of eukaryotic 5' and 3' UTR sequences, including over 26 million entries from over 6 million genes and 573 species, enriched with a curated set of functional annotations. Annotations include CAGE tags and polyA signals to label the completeness of 5' and 3'UTRs, respectively. In addition, uORFs and IRES are annotated in 5'UTRs as well as experimentally validated miRNA targets in 3'UTRs. Further annotations include evolutionarily conserved blocks, Rfam motifs, ADAR-mediated RNA editing events, and m6A modifications. A web interface allowing a flexible selection and retrieval of specific subsets of UTRs, selected according to a combination of criteria, has been implemented which also provides comprehensive download facilities. UTRdb 2.0 is accessible at http://utrdb.cloud.ba.infn.it/utrdb/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Eucariontes , ARN Mensajero , Regiones no Traducidas , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5' , Eucariontes/genética , Células Eucariotas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Methods Mol Biol ; 2584: 311-335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36495458

RESUMEN

rCASC is a modular workflow providing an integrated environment for single-cell RNA-seq (scRNA-Seq) data analysis exploiting Docker containers to achieve functional and computational reproducibility. It was initially developed as an R package usable also through a Java GUI. However, the Java frontend cannot be employed when running rCASC on a remote server, a typical setup due to the significant computational resources commonly needed to analyze scRNA-Seq data.To allow the use of rCASC through a graphical user interface on the client side and to harness the many advantages provided by the Galaxy platform, we have made rCASC available as a Galaxy set of tools, also providing a dedicated public instance of Galaxy named "Galaxy-rCASC." To integrate rCASC into Galaxy, all its functions, originally implemented as a set of Docker containers to maximize reproducibility, have been extensively reworked to become independent from the R package functions that launch them in the original implementation. Furthermore, suitable Galaxy wrappers have been developed for most functions of rCASC. We provide a detailed reference document to the use of Galaxy-rCASC with insights and explanations on the platform functionalities, parameters, and output while guiding the reader through the typical rCASC analysis workflow of a scRNA-Seq dataset.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Análisis de Datos , Flujo de Trabajo , Análisis de la Célula Individual , Biología Computacional
4.
BMC Biol ; 20(1): 171, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918713

RESUMEN

BACKGROUND: The high-mobility group Hmga family of proteins are non-histone chromatin-interacting proteins which have been associated with a number of nuclear functions, including heterochromatin formation, replication, recombination, DNA repair, transcription, and formation of enhanceosomes. Due to its role based on dynamic interaction with chromatin, Hmga2 has a pathogenic role in diverse tumors and has been mainly studied in a cancer context; however, whether Hmga2 has similar physiological functions in normal cells remains less explored. Hmga2 was additionally shown to be required during the exit of embryonic stem cells (ESCs) from the ground state of pluripotency, to allow their transition into epiblast-like cells (EpiLCs), and here, we use that system to gain further understanding of normal Hmga2 function. RESULTS: We demonstrated that Hmga2 KO pluripotent stem cells fail to develop into EpiLCs. By using this experimental system, we studied the chromatin changes that take place upon the induction of EpiLCs and we observed that the loss of Hmga2 affects the histone mark H3K27me3, whose levels are higher in Hmga2 KO cells. Accordingly, a sustained expression of polycomb repressive complex 2 (PRC2), responsible for H3K27me3 deposition, was observed in KO cells. However, gene expression differences between differentiating wt vs Hmga2 KO cells did not show any significant enrichments of PRC2 targets. Similarly, endogenous Hmga2 association to chromatin in epiblast stem cells did not show any clear relationships with gene expression modification observed in Hmga2 KO. Hmga2 ChIP-seq confirmed that this protein preferentially binds to the chromatin regions associated with nuclear lamina. Starting from this observation, we demonstrated that nuclear lamina underwent severe alterations when Hmga2 KO or KD cells were induced to exit from the naïve state and this phenomenon is accompanied by a mislocalization of the heterochromatin mark H3K9me3 within the nucleus. As nuclear lamina (NL) is involved in the organization of 3D chromatin structure, we explored the possible effects of Hmga2 loss on this phenomenon. The analysis of Hi-C data in wt and Hmga2 KO cells allowed us to observe that inter-TAD (topologically associated domains) interactions in Hmga2 KO cells are different from those observed in wt cells. These differences clearly show a peculiar compartmentalization of inter-TAD interactions in chromatin regions associated or not to nuclear lamina. CONCLUSIONS: Overall, our results indicate that Hmga2 interacts with heterochromatic lamin-associated domains, and highlight a role for Hmga2 in the crosstalk between chromatin and nuclear lamina, affecting the establishment of inter-TAD interactions.


Asunto(s)
Membrana Nuclear , Células Madre Pluripotentes , Cromatina/genética , Cromatina/metabolismo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Membrana Nuclear/metabolismo , Células Madre Pluripotentes/metabolismo , Complejo Represivo Polycomb 2/genética
5.
BMC Bioinformatics ; 22(Suppl 15): 544, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749633

RESUMEN

BACKGROUND: Improving the availability and usability of data and analytical tools is a critical precondition for further advancing modern biological and biomedical research. For instance, one of the many ramifications of the COVID-19 global pandemic has been to make even more evident the importance of having bioinformatics tools and data readily actionable by researchers through convenient access points and supported by adequate IT infrastructures. One of the most successful efforts in improving the availability and usability of bioinformatics tools and data is represented by the Galaxy workflow manager and its thriving community. In 2020 we introduced Laniakea, a software platform conceived to streamline the configuration and deployment of "on-demand" Galaxy instances over the cloud. By facilitating the set-up and configuration of Galaxy web servers, Laniakea provides researchers with a powerful and highly customisable platform for executing complex bioinformatics analyses. The system can be accessed through a dedicated and user-friendly web interface that allows the Galaxy web server's initial configuration and deployment. RESULTS: "Laniakea@ReCaS", the first instance of a Laniakea-based service, is managed by ELIXIR-IT and was officially launched in February 2020, after about one year of development and testing that involved several users. Researchers can request access to Laniakea@ReCaS through an open-ended call for use-cases. Ten project proposals have been accepted since then, totalling 18 Galaxy on-demand virtual servers that employ ~ 100 CPUs, ~ 250 GB of RAM and ~ 5 TB of storage and serve several different communities and purposes. Herein, we present eight use cases demonstrating the versatility of the platform. CONCLUSIONS: During this first year of activity, the Laniakea-based service emerged as a flexible platform that facilitated the rapid development of bioinformatics tools, the efficient delivery of training activities, and the provision of public bioinformatics services in different settings, including food safety and clinical research. Laniakea@ReCaS provides a proof of concept of how enabling access to appropriate, reliable IT resources and ready-to-use bioinformatics tools can considerably streamline researchers' work.


Asunto(s)
COVID-19 , Nube Computacional , Biología Computacional , Humanos , SARS-CoV-2 , Programas Informáticos
6.
Methods Mol Biol ; 2284: 77-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835439

RESUMEN

RNA-Seq has become the de facto standard technique for characterization and quantification of transcriptomes, and a large number of methods and tools have been proposed to model and detect differential gene expression based on the comparison of transcript abundances across different samples. However, state-of-the-art methods for this task are usually designed for pairwise comparisons, that is, can identify significant variation of expression only between two conditions or samples. We describe the use of RNentropy, a methodology based on information theory, devised to overcome this limitation. RNentropy can thus detect significant variations of gene expression in RNA-Seq data across any number of samples and conditions, and can be applied downstream of any analysis pipeline for the quantification of gene expression from raw sequencing data. RNentropy takes as input gene (or transcript) expression values, defined with any measure suitable for the comparison of transcript levels across samples and conditions. The output consists of genes (or transcripts) exhibiting significant variation of expression across the conditions studied, together with the samples in which they result to be over- or underexpressed. RNentropy is implemented as an R package and freely available from the CRAN repository. We provide a detailed guide to the functions and parameters of the package and usage examples to demonstrate the software capabilities, also showing how it can be applied to the analysis of single-cell RNA sequencing data.


Asunto(s)
Entropía , RNA-Seq/métodos , ARN/química , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Biomarcadores/análisis , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Especificidad de Órganos/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Secuenciación del Exoma
7.
J Mol Biol ; 433(11): 166829, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33508309

RESUMEN

In diploid organisms, two copies of each allele are normally inherited from parents. Paternal and maternal alleles can be regulated and expressed unequally, which is referred to as allele-specific expression (ASE). In this work, we present aScan, a novel method for the identification of ASE from the analysis of matched individual genomic and RNA sequencing data. By performing extensive analyses of both real and simulated data, we demonstrate that aScan can correctly identify ASE with high accuracy and sensitivity in different experimental settings. Additionally, by applying our method to a small cohort of individuals that are not included in publicly available databases of human genetic variation, we outline the value of possible applications of ASE analysis in single individuals for deriving a more accurate annotation of "private" low-frequency genetic variants associated with regulatory effects on transcription. All in all, we believe that aScan will represent a beneficial addition to the set of bioinformatics tools for the analysis of ASE. Finally, while our method was initially conceived for the analysis of RNA-seq data, it can in principle be applied to any quantitative NGS assay for which matched genotypic and expression data are available. AVAILABILITY: aScan is currently available in the form of an open source standalone software package at: https://github.com/Federico77z/aScan/. aScan version 1.0.3, available at https://github.com/Federico77z/aScan/releases/tag/1.0.3, has been used for all the analyses included in this manuscript. A Docker image of the tool has also been made available at https://github.com/pmandreoli/aScanDocker.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Programas Informáticos , Simulación por Computador , Bases de Datos Genéticas , Genes , Humanos , Especificidad de Órganos/genética , Polimorfismo Genético , Regiones Promotoras Genéticas/genética
8.
J Biol Chem ; 296: 100138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268382

RESUMEN

The Yes-associated protein (YAP), one of the major effectors of the Hippo pathway together with its related protein WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ), mediates a range of cellular processes from proliferation and death to morphogenesis. YAP and WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ) regulate a large number of target genes, acting as coactivators of DNA-binding transcription factors or as negative regulators of transcription by interacting with the nucleosome remodeling and histone deacetylase complexes. YAP is expressed in self-renewing embryonic stem cells (ESCs), although it is still debated whether it plays any crucial roles in the control of either stemness or differentiation. Here we show that the transient downregulation of YAP in mouse ESCs perturbs cellular homeostasis, leading to the inability to differentiate properly. Bisulfite genomic sequencing revealed that this transient knockdown caused a genome-wide alteration of the DNA methylation remodeling that takes place during the early steps of differentiation, suggesting that the phenotype we observed might be due to the dysregulation of some of the mechanisms involved in regulation of ESC exit from pluripotency. By gene expression analysis, we identified two molecules that could have a role in the altered genome-wide methylation profile: the long noncoding RNA ephemeron, whose rapid upregulation is crucial for the transition of ESCs into epiblast, and the methyltransferase-like protein Dnmt3l, which, during the embryo development, cooperates with Dnmt3a and Dnmt3b to contribute to the de novo DNA methylation that governs early steps of ESC differentiation. These data suggest a new role for YAP in the governance of the epigenetic dynamics of exit from pluripotency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Madre Embrionarias de Ratones/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP , ADN Metiltransferasa 3B
9.
Bioinformatics ; 36(22-23): 5522-5523, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346830

RESUMEN

SUMMARY: While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional annotation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that, by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary patterns in the genome of SARS-CoV-2. AVAILABILITYAND IMPLEMENTATION: Galaxy.http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker: https://hub.docker.com/r/laniakeacloud/galaxy_corgat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Bioinformatics ; 36(24): 5590-5599, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33367501

RESUMEN

MOTIVATION: Clinical applications of genome re-sequencing technologies typically generate large amounts of data that need to be carefully annotated and interpreted to identify genetic variants potentially associated with pathological conditions. In this context, accurate and reproducible methods for the functional annotation and prioritization of genetic variants are of fundamental importance. RESULTS: In this article, we present VINYL, a flexible and fully automated system for the functional annotation and prioritization of genetic variants. Extensive analyses of both real and simulated datasets suggest that VINYL can identify clinically relevant genetic variants in a more accurate manner compared to equivalent state of the art methods, allowing a more rapid and effective prioritization of genetic variants in different experimental settings. As such we believe that VINYL can establish itself as a valuable tool to assist healthcare operators and researchers in clinical genomics investigations. AVAILABILITY AND IMPLEMENTATION: VINYL is available at http://beaconlab.it/VINYL and https://github.com/matteo14c/VINYL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

11.
Brief Bioinform ; 22(2): 616-630, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33279989

RESUMEN

Various next generation sequencing (NGS) based strategies have been successfully used in the recent past for tracing origins and understanding the evolution of infectious agents, investigating the spread and transmission chains of outbreaks, as well as facilitating the development of effective and rapid molecular diagnostic tests and contributing to the hunt for treatments and vaccines. The ongoing COVID-19 pandemic poses one of the greatest global threats in modern history and has already caused severe social and economic costs. The development of efficient and rapid sequencing methods to reconstruct the genomic sequence of SARS-CoV-2, the etiological agent of COVID-19, has been fundamental for the design of diagnostic molecular tests and to devise effective measures and strategies to mitigate the diffusion of the pandemic. Diverse approaches and sequencing methods can, as testified by the number of available sequences, be applied to SARS-CoV-2 genomes. However, each technology and sequencing approach has its own advantages and limitations. In the current review, we will provide a brief, but hopefully comprehensive, account of currently available platforms and methodological approaches for the sequencing of SARS-CoV-2 genomes. We also present an outline of current repositories and databases that provide access to SARS-CoV-2 genomic data and associated metadata. Finally, we offer general advice and guidelines for the appropriate sharing and deposition of SARS-CoV-2 data and metadata, and suggest that more efficient and standardized integration of current and future SARS-CoV-2-related data would greatly facilitate the struggle against this new pathogen. We hope that our 'vademecum' for the production and handling of SARS-CoV-2-related sequencing data, will contribute to this objective.


Asunto(s)
COVID-19/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , SARS-CoV-2/genética , COVID-19/epidemiología , Humanos , Pandemias
12.
BMC Bioinformatics ; 21(Suppl 10): 352, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32838759

RESUMEN

BACKGROUND: The advent of Next Generation Sequencing (NGS) technologies and the concomitant reduction in sequencing costs allows unprecedented high throughput profiling of biological systems in a cost-efficient manner. Modern biological experiments are increasingly becoming both data and computationally intensive and the wealth of publicly available biological data is introducing bioinformatics into the "Big Data" era. For these reasons, the effective application of High Performance Computing (HPC) architectures is becoming progressively more recognized also by bioinformaticians. Here we describe HPC resources provisioning pilot programs dedicated to bioinformaticians, run by the Italian Node of ELIXIR (ELIXIR-IT) in collaboration with CINECA, the main Italian supercomputing center. RESULTS: Starting from April 2016, CINECA and ELIXIR-IT launched the pilot Call "ELIXIR-IT HPC@CINECA", offering streamlined access to HPC resources for bioinformatics. Resources are made available either through web front-ends to dedicated workflows developed at CINECA or by providing direct access to the High Performance Computing systems through a standard command-line interface tailored for bioinformatics data analysis. This allows to offer to the biomedical research community a production scale environment, continuously updated with the latest available versions of publicly available reference datasets and bioinformatic tools. Currently, 63 research projects have gained access to the HPC@CINECA program, for a total handout of ~ 8 Millions of CPU/hours and, for data storage, ~ 100 TB of permanent and ~ 300 TB of temporary space. CONCLUSIONS: Three years after the beginning of the ELIXIR-IT HPC@CINECA program, we can appreciate its impact over the Italian bioinformatics community and draw some considerations. Several Italian researchers who applied to the program have gained access to one of the top-ranking public scientific supercomputing facilities in Europe. Those investigators had the opportunity to sensibly reduce computational turnaround times in their research projects and to process massive amounts of data, pursuing research approaches that would have been otherwise difficult or impossible to undertake. Moreover, by taking advantage of the wealth of documentation and training material provided by CINECA, participants had the opportunity to improve their skills in the usage of HPC systems and be better positioned to apply to similar EU programs of greater scale, such as PRACE. To illustrate the effective usage and impact of the resources awarded by the program - in different research applications - we report five successful use cases, which have already published their findings in peer-reviewed journals.


Asunto(s)
Biología Computacional , Metodologías Computacionales , Programas Informáticos , Algoritmos , Animales , Línea Celular , Bases de Datos Genéticas , Fusión Génica , Genoma , Humanos , Prunus persica/genética , Edición de ARN , Golondrinas/genética
13.
Gigascience ; 9(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32252069

RESUMEN

BACKGROUND: While the popular workflow manager Galaxy is currently made available through several publicly accessible servers, there are scenarios where users can be better served by full administrative control over a private Galaxy instance, including, but not limited to, concerns about data privacy, customisation needs, prioritisation of particular job types, tools development, and training activities. In such cases, a cloud-based Galaxy virtual instance represents an alternative that equips the user with complete control over the Galaxy instance itself without the burden of the hardware and software infrastructure involved in running and maintaining a Galaxy server. RESULTS: We present Laniakea, a complete software solution to set up a "Galaxy on-demand" platform as a service. Building on the INDIGO-DataCloud software stack, Laniakea can be deployed over common cloud architectures usually supported both by public and private e-infrastructures. The user interacts with a Laniakea-based service through a simple front-end that allows a general setup of a Galaxy instance, and then Laniakea takes care of the automatic deployment of the virtual hardware and the software components. At the end of the process, the user gains access with full administrative privileges to a private, production-grade, fully customisable, Galaxy virtual instance and to the underlying virtual machine (VM). Laniakea features deployment of single-server or cluster-backed Galaxy instances, sharing of reference data across multiple instances, data volume encryption, and support for VM image-based, Docker-based, and Ansible recipe-based Galaxy deployments. A Laniakea-based Galaxy on-demand service, named Laniakea@ReCaS, is currently hosted at the ELIXIR-IT ReCaS cloud facility. CONCLUSIONS: Laniakea offers to scientific e-infrastructures a complete and easy-to-use software solution to provide a Galaxy on-demand service to their users. Laniakea-based cloud services will help in making Galaxy more accessible to a broader user base by removing most of the burdens involved in deploying and running a Galaxy service. In turn, this will facilitate the adoption of Galaxy in scenarios where classic public instances do not represent an optimal solution. Finally, the implementation of Laniakea can be easily adapted and expanded to support different services and platforms beyond Galaxy.


Asunto(s)
Biología Computacional/tendencias , Programas Informáticos , Flujo de Trabajo , Nube Computacional , Interfaz Usuario-Computador
14.
Front Genet ; 11: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153638

RESUMEN

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) has opened new avenues of research in the genome-wide characterization of regulatory DNA-protein interactions at the genetic and epigenetic level. As a consequence, it has become the de facto standard for studies on the regulation of transcription, and literally thousands of data sets for transcription factors and cofactors in different conditions and species are now available to the scientific community. However, while pipelines and best practices have been established for the analysis of a single experiment, there is still no consensus on the best way to perform an integrated analysis of multiple datasets in the same condition, in order to identify the most relevant and widespread regulatory modules composed by different transcription factors and cofactors. We present here a computational pipeline for this task, that integrates peak summit colocalization, a novel statistical framework for the evaluation of its significance, and motif enrichment analysis. We show examples of its application to ENCODE data, that led to the identification of relevant regulatory modules composed of different factors, as well as the organization on DNA of the binding motifs responsible for their recruitment.

15.
Biochim Biophys Acta Gen Subj ; 1864(1): 129454, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676292

RESUMEN

BACKGROUND: The execution of many genetic programs, influenced by environmental conditions, is epigenetically controlled. Thus, small molecules of the intermediate metabolism being precursors of most of nutrition-deriving epigenetic modifications, sense the cell surrounding environment. METHODS: Here we describe histone H4K16 acetylation distribution in S. cerevisiae nhp6ab mutant, using ChIP-seq analysis; its transcription profile by RNA-seq and its metabolic features by studying the metabolome. We then intersected these three -omic approaches to unveil common crosspoints (if any). RESULTS: In the nhp6ab mutant, the glucose metabolism is switched to pathways leading to Acetyl-CoA synthesis. These enhanced pathways could lead to histone hyperacetylation altering RNA transcription, particularly of those metabolic genes that maintain high Acetyl-CoA availability. CONCLUSIONS: Thus, the absence of chromatin regulators like Nhp6 A and B, interferes with a regulative circular mechanism where histone modification, transcription and metabolism influence each other and contribute to clarify the more general phenomenon in which gene regulation feeds metabolic alterations on epigenetic basis. GENERAL SIGNIFICANCE: This study allowed us to identify, in these two factors, a common element of regulation in metabolism and chromatin acetylation state that could represent a powerful tool to find out relationships existing between metabolism and gene expression in more complex systems.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas HMGN/genética , Metaboloma/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilcoenzima A/genética , Acetilación , Epigénesis Genética/genética , Glucosa/metabolismo , Histonas/genética , Procesamiento Proteico-Postraduccional/genética , RNA-Seq , Saccharomyces cerevisiae/genética
16.
Plant Cell Environ ; 43(1): 55-75, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31677283

RESUMEN

During their lifespan, plants respond to a multitude of stressful factors. Dynamic changes in chromatin and concomitant transcriptional variations control stress response and adaptation, with epigenetic memory mechanisms integrating environmental conditions and appropriate developmental programs over the time. Here we analyzed transcriptome and genome-wide histone modifications of maize plants subjected to a mild and prolonged drought stress just before the flowering transition. Stress was followed by a complete recovery period to evaluate drought memory mechanisms. Three categories of stress-memory genes were identified: i) "transcriptional memory" genes, with stable transcriptional changes persisting after the recovery; ii) "epigenetic memory candidate" genes in which stress-induced chromatin changes persist longer than the stimulus, in absence of transcriptional changes; iii) "delayed memory" genes, not immediately affected by the stress, but perceiving and storing stress signal for a delayed response. This last memory mechanism is described for the first time in drought response. In addition, applied drought stress altered floral patterning, possibly by affecting expression and chromatin of flowering regulatory genes. Altogether, we provided a genome-wide map of the coordination between genes and chromatin marks utilized by plants to adapt to a stressful environment, describing how this serves as a backbone for setting stress memory.


Asunto(s)
Aclimatación , Adaptación Fisiológica/genética , Epigénesis Genética , Flores/fisiología , Estrés Fisiológico/genética , Zea mays/fisiología , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/fisiología , Sequías , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Código de Histonas , Histonas/genética , Histonas/metabolismo , Inmunoprecipitación , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Análisis de Secuencia de ARN , Transcriptoma
17.
Brief Bioinform ; 21(6): 1971-1986, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792498

RESUMEN

A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Alelos , Mapeo Cromosómico , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
18.
Sci Rep ; 9(1): 17550, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772190

RESUMEN

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and fast method to measure gene expression. Reproducibility of the analyses is the main limitation of RT-qPCR experiments. Galaxy is an open, web-based, genomic workbench for a reproducible, transparent, and accessible science. Our aim was developing a new Galaxy tool for the analysis of RT-qPCR expression data. Our tool was developed using Galaxy workbench version 19.01 and functions implemented in several R packages. We developed PIPE-T, a new Galaxy tool implementing a workflow, which offers several options for parsing, filtering, normalizing, imputing, and analyzing RT-qPCR data. PIPE-T requires two input files and returns seven output files. We tested the ability of PIPE-T to analyze RT-qPCR data on two example datasets available in the gene expression omnibus repository. In both cases, our tool successfully completed execution returning expected results. PIPE-T can be easily installed from the Galaxy main tool shed or from Docker. Source code, step-by-step instructions, and example files are available on GitHub to assist new users to install, execute, and test PIPE-T. PIPE-T is a new tool suitable for the reproducible, transparent, and accessible analysis of RT-qPCR expression data.


Asunto(s)
Interpretación Estadística de Datos , Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa , Programas Informáticos , Biología Computacional/métodos , Genómica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcriptoma
19.
Genome Biol ; 20(1): 164, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31405382

RESUMEN

Bioinformaticians and biologists rely increasingly upon workflows for the flexible utilization of the many life science tools that are needed to optimally convert data into knowledge. We outline a pan-European enterprise to provide a catalogue ( https://bio.tools ) of tools and databases that can be used in these workflows. bio.tools not only lists where to find resources, but also provides a wide variety of practical information.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Bases de Datos Factuales , Programas Informáticos , Internet
20.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849367

RESUMEN

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Células Cultivadas , Redes Reguladoras de Genes/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...